
Finish the Sorting Intro
Work on Spellchecker Project

Mini-project is due at the beginning of Day 30
class (no late days), so ready for presentation
There will be time in class to work with your
team every day. Do not miss it!

Questions?

Today:
◦ Finish the Sorting intro
◦ Work on Spellchecker

What should you know/be able to do by the end of
this course?
◦ The basic idea of how each sort works

insertion, selection, bubble, shell, merge
◦ Can write the code in a few minutes

insertion, bubble, selection
perhaps with a minor error or two
not because you memorized it, but because you understand it

◦ What are the best case and worst case orderings of N data
items? For each of these:

Number of comparisons
Number of data movements

Insertion sort
◦ for (i=1; i< N; i++)

place a[i] in its correct position relative to a[0] …a[i-1]
move "right" each of those items that is less than a[i].

Selection sort
◦ for (i=N-1; i>0; i--)

maxPos = location of largest element among a[0] … a[i]
a[i]↔a[maxPos]

Bubble sort
◦ for (i=0; i< N-1; i++)
◦ for (j=0; j≤ i; j++)

if (a[j] > a[j+1]) a[j]↔a[j+1]
Demonstrations:
◦ http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
◦ http://www.geocities.com/siliconvalley/network/1854/Sor

t1.html

Def: An inversion is any pair of inputs that are out of
order:
◦ [5,8,3,9,6] has 4 inversions: (5,3), (8,3), (8,6), (9,6)
◦ [5,3,8,9,6] has 3 inversions: (5,3), (8,6), (9,6)
Swapping a pair of adjacent elements removes exactly one
inversion
Worst case?
◦ all n(n-1)/2 pairs are out of order, so n(n-1)/2 swaps.

Average case?
◦ Consider any array, a, and its

reverse, r. Then
inv(a) + inv(r) = n(n-1)/2

◦ So on average, n(n-1)/4 inversions.

Conclusion: if few inversions (almost sorted),
then few swaps

Yesterday we looked at a quick demo of
selection, bubble, and insertion sorts…
◦ Completely random data
◦ Nearly sorted data

If swapping a pair of adjacent elements removes
exactly one inversion…
Would swapping elements that are farther
apart remove more inversions?

ShellSort
MergeSort

1959, Donald Shell
Based on insertion sort
http://www.cs.princeton.edu/~rs/shell/animate.html
Faster because it compares elements with a gap of several
positions
For example, if the gap size is 8,
◦ Insertion sort elements 0, 8, 16, 24, 32, 40, …
◦ Insertion sort elements 1, 9, 17, 25, 33, 41, …
◦ …
◦ Insertion sort elements 7, 15, 23, 31, 39, 47, …
Elements that are far out of order are quickly moved closer
to where they are supposed to go.

public static final int[] GAPS = {1, 4, 10, 23, 57, 132, 301, 701};

public static void shellSort(int[] a) {
for (int gapIndex = GAPS.length - 1; gapIndex >= 0; gapIndex--) {

int increment = GAPS[gapIndex];
if (increment < a.length)

for (int i = increment; i < a.length; i++) {
int temp = a[i];
for (int j = i;

j >= increment && a[j - increment] > temp;
j -= increment) {
a[j] = a[j - increment];

}
a[j] = temp;

}
}

TEST CODE:
public static void main(String[] args) {

int SIZE = 31;
int [] nums = new int[SIZE];
for (int i=0; i<SIZE; i++) {

nums[i] = (SIZE/2 + 5*i) % SIZE;
}
printArray("Before sort", nums);
shellSort(nums);
printArray("After sort", nums);

Start with a large gap
Do it again with a smaller gap
Keep decreasing the gap size
The last time, the gap must be 1 (why?)
No gap size should be a multiple of another
(except all are multiples of 1)
If proper gaps are chosen, worst-case
performance is O(N (log N)2)
An example of shellsort analysis (not for the
faint of heart):
◦ http://www.cs.princeton.edu/~rs/shell/paperF.pdf

Divide and conquer
Sort each half, merge halves together
How to sort each half?
◦ Use Merge sort
Running time to merge two sorted arrays
whose total length is N:
◦ O(N)

public static void mergeSort(int [] a)
{

int [] tmpArray = new int[a.length];
mergeSort(a, tmpArray, 0, a.length - 1);

}

/**
* Internal method that makes recursive calls.
* @param a an array of Comparable items.
* @param tmpArray an array to place the merged result.
* @param left the left-most index of the subarray.
* @param right the right-most index of the subarray.
*/
private static void mergeSort(int [] a, int [] tmpArray,

int left, int right)
{

if(left < right)
{

int center = (left + right) / 2;
mergeSort(a, tmpArray, left, center);
mergeSort(a, tmpArray, center + 1, right);
merge(a, tmpArray, left, center + 1, right);

}
}

private static void mergeSort(a, left, right) {
if(left < right) {

int center = (left + right) / 2
mergeSort(a, left, center)
mergeSort(a, center + 1, right)
merge(a, left, center + 1, right)

}
}

Need to answer:
◦ How deep is the recursion?
◦ How much work is done in each level of the

recursion?

/**
* Internal method that merges two sorted halves of a subarray.
* @param a an array of Comparable items.
* @param tmpArray an array to place the merged result.
* @param leftPos the left-most index of the subarray.
* @param rightPos the index of the start of the second half.
* @param rightEnd the right-most index of the subarray.
*/

private static void merge(int [] a, int [] tmpArray,
int leftPos, int rightPos, int rightEnd) {

int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;

// Main loop
while(leftPos <= leftEnd && rightPos <= rightEnd)

if(a[leftPos] <= a[rightPos])
tmpArray[tmpPos++] = a[leftPos++];

else
tmpArray[tmpPos++] = a[rightPos++];

while(leftPos <= leftEnd) // Copy rest of first half
tmpArray[tmpPos++] = a[leftPos++];

while(rightPos <= rightEnd) // Copy rest of right half
tmpArray[tmpPos++] = a[rightPos++];

// Copy tmpArray back
for(int i = 0; i < numElements; i++, rightEnd--)

a[rightEnd] = tmpArray[rightEnd];
}

Merging two sorted arrays of length O(n/2)
each is ~n steps

Why?
◦ After each comparison, one element is moved into

the sorted array, so there are only n comparisons

What about merging two sorted arrays of
length n/2 each?

For simplicity, assume that N is a power of 2.
N = Time for merging the sorted halves
N = (N/2)*2 = time for merging four sorted
"quarters" into two sorted "halves"
N = (N/4)*4 = time for merging four sorted
"eighths" into two sorted "quarters"
…
N = (2)*N/2 = time for merging N single
elements into N/2 sorted pairs
Total =

Project time
Proceed according to your IEP.

