CSSE 220 Day 27

Finish the Sorting Intro
Work on Spellchecker Project

CSSE 220 Day 27

» Mini-project is due at the beginning of Day 30
class (no late days), so ready for presentation

» There will be time in class to work with your
team every day. Do not miss it!

» Questions?

» Today:

> Finish the Sorting intro
- Work on Spellchecker

Knowledge of Elementary Sorts

» What should you know/be able to do by the end of
this course?

- The basic idea of how each sort works
- insertion, selection, bubble, shell, merge
- Can write the code in a few minutes
- insertion, bubble, selection
- perhaps with a minor error or two
- not because you memorized it, but because you understand it
- What are the best case and worst case orderings of N data
items? For each of these:
- Number of comparisons
- Number of data movements

Elementary Sort summary

» Insertion sort
o for (i=1; i< N; i++)
- place ali] in its correct position relative to a[0] ...a[i-1]
- move "right" each of those items that is less than a[i].

Selection sort
o for (i=N-1;i>0; i--)

- maxPos = location of largest element among a[0] ... ali]

- a[i]—a[maxPos]
Bubble sort
o for (i=0; i< N-1; i++)
o for (j=0; j<i; j++)

- if @[j] > a[j+1)) a[jl—al[j+1]

Demonstrations:
o http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html

v

v

v

0 h]ttﬁ://Ivvww.qeocities.com/siIiconvaIIey/network/1 854 /Sor
{l.ntm

Analyzing Sorts

» Def: An /inversion is any pair of inputs that are out of
order:
- [5,8,3,9,6] has 4 inversions: (5,3), (8,3), (8,6), (9,6)
- [5,3,8,9,6] has 3 inversions: (5,3), (8,6), (9,6)

) removes exactly one
inversion

» Worst case?
> all n(n-1)/2 pairs are out of order, so n(n-1)/2 swaps.

Average case?

- Consider any array, a, and its
reverse, r. Then
inv(a) + inv(r) = n(n-1)/2

> So on average, n(n-1)/4 inversions.

v

Demo

» Conclusion: if few inversions (almost sorted),
then few swaps

» Yesterday we looked at a quick demo of
selection, bubble, and insertion sorts...
- Completely random data
> Nearly sorted data

How do we beat O(n2)?

» If swapping a pair of adjacent elements removes
exactly one inversion...

» Would swapping elements that are farther
apart remove more inversions?

» ShellSort
» MergeSort

Shell sort

1959, Donald Shell
» Based on insertion sort

v

» Faster because it compares elements with a gap of several
positions

» For example, if the gap size is 8,
- |Insertion sort elements 0, 8, 16, 24, 32, 40, ...
> Insertion sort elements 1, 9, 17, 25, 33, 41, ...

o

- Insertion sort elements 7, 15, 23, 31, 39, 47, ...

» Elements that are far out of order are quickly moved closer
to where they are supposed to go.

ShellSort example

{ingina 32 83 "0 82 24 L0 35 19 73 54 40 43 B3 06

AkerGsorl | 32 35 "G 68 24 40 &2 T 75 B Bb 55 B3 B2 Sewmps

Arp son | 32 "0 -0 a3 24 40 54 33 M5 08 S5 8% 93 52 wawans

Afar "-p0rl | 16 "W 24 s S5 4D &4 hd fE RA Sh 38 B dh |h Aees

ShellSort Code

public static final int[] GAPS = {1, 4, 10, 23, 57, 132, 301, 701};

public static void shellSort(int[] a) {
for (int gaplndex = GAPS.length - 1; gaplndex >= 0; gaplndex--) {
int increment = GAPS[gaplndex];
1T (increment < a.length)
for (int 1 = increment; 1 < a.length; i++) {
int temp = a[i];
for (int j = 1;
J >= iIncrement && aJj - increment] > temp;
J -= 1ncrement) {

af[j] = a[jJ - i1increment];

+
aly] = temp; TEST CODE:
public static void main(String[] args) {
+ int SIZE = 31;
¥ int [] nums = new Int[SIZE];

for (int 1=0; I<SIZE; 1++) {
nums[i] = (SI1ZE/2 + 5*i) % SIZE;

}

printArray(''Before sort", nums);
shellSort(nums);
printArray("'After sort', nums);

P

Shell sort gap sizes

» Start with a large gap

» Do it again with a smaller gap

» Keep decreasing the gap size

» The last time, the gap must be 1 (why?)

» No gap size should be a multiple of another
(except all are multiples of 1)

» If proper gaps are chosen, worst-case
performance is O(N (log N)2)

» An example of shellsort analysis (not for the
faint of heart):

Merge Sort

» Divide and conquer
» Sort each half, merge halves together
» How to sort each half?

- Use Merge sort

» Running time to merge two sorted arrays
whose total length is N:
> O(N)

public static void mergeSort(Iint [] a)

{
int [] tmpArray = new int][a.length];
mergeSort(a, tmpArray, 0, a.length - 1);
+
/**
* Internal method that makes recursive calls.
* a an array of Comparable i1tems.
* tmpArray an array to place the merged result.
* left the left-most i1ndex of the subarray.
* right the right-most i1ndex of the subarray.
*/

private static void mergeSort(int [] a, int [] tmpArray,
int left, Int right)

{

iT(left < right)

{
int center = (left + right) 7/ 2;
mergeSort(a, tmpArray, left, center);
mergeSort(a, tmpArray, center + 1, right);
merge(a, tmpArray, left, center + 1, right);

¥

Mergesort Analysis

private static void mergeSort(a, left, right) {
if(left < right) {
int center = (left + right) / 2
mergeSort(a, left, center)
mergeSort(a, center + 1, right)
merge(a, left, center + 1, right)
}
}

» Need to answer:
- How deep is the recursion?

- How much work is done in each level of the
recursion?

/**
* Internal method that merges two sorted halves of a subarray.
* @param a an array of Comparable i1tems.
* @param tmpArray an array to place the merged result.
* @param leftPos the left-most index of the subarray.
* @param rightPos the index of the start of the second half.
* @param rightEnd the right-most index of the subarray.
*/
private static void merge(int [] a, int [] tmpArray,
int leftPos, int rightPos, int rightEnd) {
int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;

// Main loop
while(leftPos <= leftEnd && rightPos <= rightEnd)
1T a[leftPos] <= a[rightPos])
tmpArray[tmpPos++] = a[leftPos++];
else
tmpArray[tmpPos++] = a[rightPos++];

while(leftPos <= leftEnd) // Copy rest of first half
tmpArray[tmpPos++] = a[leftPos++];

while(rightPos <= righteEnd) // Copy rest of right half
tmpArray[tmpPos++] = a[rightPos++];

// Copy tmpArray back
for(C int 1 = 0; 1 < numElements; i1++, rightEnd--)
a[rightEnd] = tmpArray[rightEnd];

Analysis of merge()

» Merging two sorted arrays of length O(n/2)
each is ~n steps

» Why?
- After each comparison, one element is moved into
the sorted array, so there are only n comparisons

» What about merging two sorted arrays of
length n/2 each?

Visual analysis

Mergesort Analysis

» For simplicity, assume that N is a power of 2.

» N = Time for merging the sorted halves

» N = (N/2)*2 = time for merging four sorted
"quarters” into two sorted "halves”

» N = (N/4)*4 = time for merging four sorted
"eighths” into two sorted "quarters”

> ...

» N = (2)*N/2 = time for merging N single
elements into N/2 sorted pairs

» Total =

Project time

» Proceed according to your IEP.

